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NATURAL CONVECTION OF A CONDUCTING LIQUID
IN A SPHERICAL LAYER.
II. METHOD OF SOLUTION. CALCULATED RESULTS

S. V. Solov'ev, V. K. Bulgakov, and UDC §36.25
S. V. Kuznetsov

A system of differential equations describing the natural convection of the conducting liquid in the earth’s
core is solved numerically by the methods of a reference volume and finite differences.

The system of differential equations (7)-(11) was solved numerically by the method of a reference volume
{1}, which is the most efficient in solving problems of heat transfer and liquid dynamics, and the method of finite
differences.

After integration of Eqs. (7)-(11) over the reference volume (Fig. 1) we obtain their discrete analogs:

for the energy equation
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for the vorticity equation

Fig. 1. Reference volume.
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for the stream function
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for the equation of radial magnetic induction
apBrp = aEB’.E + awBrW + aNB,N + asB’.S + B,
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for the equation of meridian magnetic induction
a,By = apBy + ayBy + ayBy + agBy + B (16)
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In discrete form the boundary conditions (BC) for Egs. (12)-(16) are written as follows. For the stream
function:

a) on the walls
Woj =Wy =03 Wy =Wo5 Wi =Wy J=0,M;

b) on the symmetry axis
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Wio =Wy =0;
Vi1 =2 + Wy = Winge — Wiy + W1 =0; i=0,K.

For the vorticity:
a) on the walls
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b) on the symmetry axis

For the temperature:
a) on the walls
dgy=1; 9x;=0; j=0,M (BC of the first kind);

2Ar
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b) on the symmetry axis
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For the magnetic induction:
a) on the walls
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b) on the symmetry axis
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ra = Brigs Bripg = Bryy_y> Boy = Boys Bo

iM
Here, the following notation is adopted: f(r, 6) = f(r;, 6) = f;;, where f is some function.

To solve Egs. (12)-(16), the Gauss-Siedel iteration technique with the use of lower relaxation was adopted.
In implementing the iteration technique it was noticed that if calculations of iterations were alternated in the
0—x and n—0 directions, then the time of calculation up to obtaining a physical solution with a prescribed degree
of accuracy was considerably reduced. Calculations were performed on a 15 (for the radius) X 25 (for the angle)
grid. As a result of the calculations, the temperature and stream-function fields and the radial and meridian
components of the velocity and the magnetic induction were obtained.

Figures 2, 3 provide calculated results for steady-state conditions for ro/r; = 1/2.62, Gr/ Re2=10% s/ Ren
=1 [2]. On the surfaces of the spheres the temperatures were assumed to be constant (boundary conditions of the
first kind) but the inner sphere was more heated. The boundary conditions for the magnetic induction at the
boundaries I'y, I'; were as follows (Fig. 3a and b, respectively):
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Fig. 2. Calculated results for convective heat transfer of a nonconducting lig-
uid: I) temperature: 1) 8 = 0, 180; 2) 90; 3) 45, 135% II) stream function
I Wnax ! ~5.20; I1D) local Nusselt numbers: Nu,, = 2.629; Nu,, = 1.031.

w
a
- Nu
3317 Nuty
0263 Nuz ,
g 80 1808
v
b - Nu Nuy
a3
NQQ
Q270 .
0 50 808

Fig. 3. Convection of the conducting liquid in the earth’s core (at the core
boundaries the radial (a) and meridian (b) components of the magnetic
induction are prescribed): I) temperature, II) stream function [a)
IWhax! ~5.16, b) 4.991; IID) magnetic induction [a) BI™ ~2.71,
| BF**1 ~3; b) 6.92, 9.74]; IV) local Nusselt numbers [a) Nu,, = 2.621,
Ni,, = 1.028; b) 2.572, 1.007].

B,izi; Bgiwo and B,.in; Bgizl, i=1,2.

A comparison of the resulis obtained reveals that account for the magnetic induction influences the
temperature field insignificantly. This is confirmed by the distribution of the local Nusselt numbers Nu;, Nu; and
their averaged values Nu,,, Nu,,. The flow pattern also does not change qualitatively although the intensity of the
convection decreases in the case of account for the magnetic induction. The maximum value of the stream function
(Fig. 2), corresponding to the natural-convection heat transfer of a nonconducting liquid, is 5.20. In the casc of a
conducting liquid account for the magnetic conduction leads to suppression of convection in the core, and this effect
is most pronounced in prescribing the meridian component of the magnetic induction Bs (Fig. 3b). Here
B ~6.92, 1BF™1 ~9.74, 1W,_, | ~4.99 as compared to the case of radial magnetic induction (Fig. 3a), where
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B** ~2.71, 1Bg**1 ~3, 1W__ | ~5.16. The analogous conclusion that the magnetic field prevents initiation of
thermal convection in the earth’s core is drawn in [3].

Comparing the magnetic-induction fields in Fig. 3, one can notice that prescribing the radial component of
magnetic induction at the core boundaries (Fig. 3a) results in initiation of the meridian component. Here,
IB';””‘I/B',““" ~1.1 > 1. In the case of prescribing the meridian component of magnetic induction at the core
boundaries the radial component appears (Fig. 3b); however, here B}'**/1B5%*| ~0.71 < 1. For all the calculated
fields (temperature, stream function, magnetic induction, local Nusselt numbers) symmetry relative to the angle 6
= 90° occurs.

As is seen from the figures, there is four-cell flow in the liquid layer. Its intensity is considerably smaller
at the poles (6 = 0, 180°) than in the central region.

Figure 2 shows a temperature distribution over the thickness of the spherical layer typical for natural-
convection heat transfer (the dashed line is the temperature distribution in the case of pure thermal conductivity).
The change in the local Nusselt numbers has a "wavy" character, it copies the temperature profile. Testing with
the aid of the heat-balance equation

showed that the calculated -N_t—l,l and ﬁﬁ,z are in good agreement.

The averaged Nusselt numbers have the tendency to decrease in the case of convection of a conducting
liquid as compared to convection of a nonconduiting liquid.

Thus, the mathematical model suggested gives the possibility of calculating the fields of the stream function,
temperature, magnetic induction, and local and averaged Nusselt numbers. An analysis of the results obtained
allows the following conclusion to be drawn — natural convection exerts an influence on the magnetic field of the
earth’s core, thus creating conditions for its generation.

NOTATION

WY, stream function; w, vorticity; 9, temperature; B,, Bg, radial and meridian components of magnetic
induction; 6, polar angle; r, current radius; Ar, radius step; A6, angle step; Ar, time step; Sh, Pr, Re, Gr,
dimensionless Strouhal, Peclet, Reynolds, and Grashof numbers, respectively; S, Rey, magnetic-interaction
parameter and magnetic Reynolds number, respectively; Bij, Biz, Biot numbers at the inner and outer boundaries
of the core; I'y, I'z, boundaries of the inner and outer spheres; Ry = ry/ry, dimensionless outer radius of the core;
r, ry, outer and inner dimensional radii of the core; Nu;j, Nuj, local Nusselt numbers on the internal (I';) and
‘external (I';) surfaces of the core; 'ﬁﬁ,l, N—ﬁ,.z, averaged Nusselt numbers on the internal and external surfaces of
the core; C;, constant that is equal to unity with account for the convection terms in the energy and vorticity
equations and is equal to zero when the convection terms in these equations are neglected; C,, constant that is
equal to unity with account for the lifting forces in the vorticity equation and is equal to zero when the lifting forces
are neglected; C3, constant that is equal to unity with account for the magnetic forces in the vorticity equation and
is equal to zero when the magnetic forces are neglected. Subscripts and superscripts: 1, 2, internal and external
surface; m, magnetic; E, W, N, S, p, e, w, n, s, ne, nw, se, sw, nodal points of the fragment of the reference volume;
max, maximum; r, radial component; 8, meridian component.
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