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A system of  differential equations describing the natural convection of  the conducting liquid in the earth's 
core is solved numerically by the methods of  a reference volume and finite differences. 

The system of differential equations (7)-(1 I) was solved numerically by the method of a reference volume 
[1 1, which is the most efficient in solving problems of heat transfer and liquid dynamics, and the method of finite 
differences. 

After integration of Eqs. (7)-(1 I) over the reference volume (Fig. 1) we obtain their discrete analogs: 
for the energy equation 
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apOp = aEO E + awO W + aNO N + a$0 s + B ,  (12) 
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where 

for the vorticity equation 
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Fig. I. Reference volume. 
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where 

where 
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for the equation of radial magnetic induction 
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for the equation of meridian magnetic induction 

apBop = aEBOE + awBow + aNBoN + asBos + B ,  (16) 
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In discrete form the boundary conditions (BC) for Eqs. (12)-(16) are written as follows. For the stream 
function: 

a) on the walls 

q~O]= ~FKj=O; UJI/= UYOj; UYKj= UYK_ U; j = O , M ;  

b) on the symmetry axis 
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qJi0 = qJ/M = 0 ; 

I t / i - I  - -  2~/o + kidil = l | / i M + l  - -  2qJiM + qJ/M-l = 0 ; i = 0, K .  

For the vorticity: 

a) on the walls 
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For the temperature: 
a) on the walls 

Ooj=l; OK/=O;  j = 0 ,  M (BC of the first k ind ) ;  

4011-  300]-  021 = 1 (BC of the second kind)"  
2Ar 
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b) on the symmetry  axis 

Oi I m 0t  D ; 0 /M = 0 / M _  1 ; i = 0 ,  K .  

For the magnetic induction: 

a) on the walls 

Bro l = const ," B 00i = const ; BrK j = const " BeKj = const ; ] = 0, M ; 

b) on the symmetry  axis 

Bri  I = Brtl) ; Bri  M = B r i M _  1 ; Boi  I = BOi 0 ; Boi M = BOIM_ 1 ; i = O, K .  

Here, the following notation is adopted: f(r, O) = f(ri, 0/) = fq, where f is some function. 

To solve Eqs. (12)- (16), the Gauss -S iede l  iteration technique with the use of lower relaxation was adopted.  

In implementing the iteration technique it was noticed that if calculations of iterations were a l ternated in the 

0 - ~  and  ~ - 0  directions, then the time of calculation up to obtaining a physical solution with a prescribed degree 

of accuracy was considerably reduced. Calculations were performed on a 15 (for the radius) x 25 (for the angle) 

grid. As a result of the calculations, the temperature and stream-function fields and  the radial and  meridian 
components of the velocity and the magnetic induction were obtained. 

Figures 2, 3 provide calculated results for s teady-state conditions for r2/r  I = 1/2.62, G r / R e  2=  103, S/Rein 

= 1 [2 ]. On the surfaces of the spheres the temperatures were assumed to be constant  (boundary conditions of the 

first kind) but the inner  sphere was more heated. The boundary conditions for the magnetic induction at the 
boundaries FI,  F2 were as follows (Fig. 3a and b, respectively): 
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Fig. 2. Calculated results for convective heat transfer of a nonconducting liq- 
uid: I) temperatm'e: 1) 0 - 0, 180; 2) 90; 3) 45, 135~ II) s tream function 
t ~max ! -5 .20 ;  III) local Nusselt numbers: Nuri = 2.629; Nut2 = 1.031. 
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Fig. 3, Convection of the conducting liquid in the earth 's  core (at the core 
boundaries the radial (a) and meridian (b) components of the magnetic 
i n d u c t i o n  a re  p re sc r ibed ) :  I) t e m p e r a t u r e ,  II) s t r eam f u n c t i o n  [a) 
t ~ J m x t - 5 . 1 6 ,  b) 4 . 9 9 ] ;  I I I )  m a g n e t i c  i n d u c t i o n  [a) B r ~ - - 2 . 7 1 ,  
IB~oaxl - 3 ;  b) 6.92, 9.74]; IV) local NusseIt numbers [a) Nu--'r I = 2.621, 
N-it2 = 1.028; b) 2.572, 1.007 ]. 

Bri = l ; Boi = O and B r i = 0  ; Boi = l , i = 1 , 2 .  

A comparison of the results obtained reveals that account for the magnetic induct ion influences the  
temperature field insignificantly. This is confirmed by the distribution of the local Nusselt numbers  Nul ,  Nu2 and 
their averaged values Nurl, Nut2. The flow pattern also does not change qualitatively although the intensity of the 
convection decreases in the case of account for the magnetic induction. The  maximum value of the stream function 
(Fig. 2), corresponding to the natural-convection heat transfer of a nonconducting liquid, is 5.20. In the case of a 
conducting liquid account for the magnetic conduction leads to suppression of convection in the core, and  this effect 
is most  pronounced in prescribing the meridian component  of the magnetic  induct ion B0 (Fig. 3b). Here  
B~r ax - 6.92, l Bp ax I - 9.74, I qJmax I + 4.99 as compared to the case of radial magnetic induction (Fig. 3a), where 
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Br m~ -2 .71 ,  IB~aXl - 3 ,  I~maxl -5 .16 .  The analogous conclusion that the magnetic field prevents initiation of 
thermal convection in the earth's core is drawn in [3 ]. 

Comparing the magnetic-induction fields in Fig. 3, one can notice that prescribing the radial component of 
magnetic induction at the core boundaries (Fig. 3a) results in initiation of the meridian component. Here,  
I B~axl /Br  max ~ 1.1 > 1. In the case of prescribing the meridian component of magnetic induction at the core 

boundaries the radial component appears (Fig. 3b); however, here Brmax/IB~aXl - 0 . 7 1  < 1. For all the calculated 
fields (temperature, stream function, magnetic induction, local Nusselt numbers) symmetry relative to the angle 0 
= 90 ~ occurs. 

As is seen from the figures, there is four-cell flow in the liquid layer. Its intensity is considerably smaller 
at the poles (0 - 0, 180 ~ than in the central region. 

Figure 2 shows a temperature distribution over the thickness of the spherical layer typical for natural- 

convection heat transfer (the dashed line is the temperature distribution in the case of pure thermal conductivity). 
The change in the local Nusselt numbers has a "wavy" character, it copies the temperature profile. Testing with 
the aid of the heat-balance equation 

showed that the calculated Nur I and Nut 2 are in good agreement. 

The averaged Nusselt numbers have the tendency to decrease in the case of convection of a conducting 
Hqnid as compared to convection of a nonconduiting liquid. 

Thus, the mathematical model suggested gives the possibility of calculating the fields of the stream function, 

temperature, magnetic induction, and local and averaged Nusselt numbers. An analysis of the results obtained 
allows the following conclusion to be drawn - natural convection exerts an influence on the magnetic field of the 
earth's core, thus creating conditions for its generation. 

N O T A T I O N  

qJ, stream function; m, vorticity; 0, temperature; Br, BO, radial and meridian components of magnetic 
induction; 0, polar angle; r, current radius; Ar, radius step; A0, angle step; A~, time step; Sh, Pr, Re, Gr, 
dimensionless Strouhal, Peclet, Reynolds,  and Grashof numbers, respectively; S, Rem, magnetic-interaction 

parameter and magnetic Reynolds number, respectively; Bi], Bi2, Biot numbers at the inner and outer boundaries 

of the core; T l , / '2 ,  boundaries of the inner and outer spheres; R 2 -, r 2 / r  1, dimensionless outer radius of the core; 
r2, rl, outer and inner dimensional radii of the core; Nul, Nu2, local Nusselt numbers on the internal (Fl) and 

external (/'2) surfaces of the core; Nut1 , Nur2 , averaged Nusselt numbers on the internal and external surfaces of 
the core; Cl, constant that is equal to unity with account for the convection terms in the energy and vorticity 
equations and is equal to zero when the convection terms in these equations are neglected; C2, constant that is 

equal to unity with account for the lifting forces in the vorticity equation and is equal to zero when the lifting forces 
are neglected; Ca, constant that is equal to unity with account for the magnetic forces in the vorticity equation and 
is equal to zero when the magnetic forces are neglected. Subscripts and superscripts: I, 2, internal and external 

surface; m, magnetic; E,  W, N,  S, p, e, w, n, s, ne, nw, se, sw, nodal points of the fragment of the reference volume; 
max, maximum; r, radial component; 0, meridian component. 
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